voeto.ru страница 1страница 2
скачать файл
Муниципальное бюджетное общеобразовательное

учреждение – гимназия №2 г. Тулы


“Утверждаю”

Директор МОУ – Г № 2

___________ / Л.М. Пономарева /

"_____" 2012 г.



РАБОЧАЯ ПРОГРАММА

ПО АЛГЕБРЕ И НАЧАЛАМ МАТЕМАТИЧЕСКОГО АНАЛИЗА

ДЛЯ 10 А КЛАССА

на 2012-2013 учебный год


Программа составлена на основе

Программы для общеобразовательных учреждений

по алгебре для 10 - 11 классов.

УМК «Алгебра - 10 класс. Профильный уровень» - автор А.Г.Мордкович


Годовое количество часов

Количество часов в неделю



- 136

- 4


По плану:

контрольных работ




- 8


Учитель: Блинова О.А.






Рассмотрено на заседании кафедры

физико-математических дисциплин

" " __________ 2012 г., пр. № _____

Руководитель кафедры _____ Е.В. Агапова
Согласовано с НМС

"____" __________ 2012 г., пр. № _____


Руководитель НСМ ________ Г.А. Панкова
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Настоящая программа по алгебре и началам математического анализа для 10 класса (профильный уровень) составлена на основе Федерального компонента государственного стандарта среднего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерной программы для общеобразовательных учреждений по алгебре и началам математического анализа к УМК «Алгебра - 10 класс. Профильный уровень - автор А.Г.Мордкович» [Программы для общеобразовательных учреждений. Алгебра и начала математического анализа. 10-11 классы. Авторы-составители И.И.Зубарева, А.Г.Мордкович – М.: Мнемозина, 2009.]

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса. Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры и началам математического анализа в 10 (профильный уровень) классе отводится 136 часов из расчёта 4 часа в неделю. Рабочая программа по алгебре для 10 класса рассчитана на это же количество часов.


Общая характеристика учебного предмета.

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

• систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

• развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

• систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

• расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

• развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

• совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе


Цели и задачи обучения.

Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:




  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно - научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.


Задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе и его применение к решению математических и нематематических задач;

  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

  • изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;

  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

  • знакомство с основными идеями и методами математического анализа.


Срок реализации рабочей учебной программы – один учебный год.

В данном классе ведущими методами обучения предмету являются: поисковый, объяснительно-иллюстративный и репродуктивный. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.



Уровень обучения: профильный.

Формы промежуточной и итоговой аттестации.

Промежуточная аттестация проводится в форме контрольных, самостоятельных работ. Итоговая аттестация предусмотрена в виде переводного экзамена.
Общеучебные умения, навыки и способы деятельности.
Универсальные учебные действия.

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт



  • проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

  • решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

  • планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

  • самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

В ходе освоения содержания математического образования учащиеся овладевают системой личностных, регулятивных, познавательных, коммуникативных универсальных учебных действий, построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

  • выполнение и самостоятельное составление алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

  • самостоятельная работа с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

  • проведение доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

  • самостоятельная и коллективная деятельность, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
  • развитие у обучающихся способности к самосознанию, саморазвитию и самоопределению;
  • формирование личностных ценностно-смысловых ориентиров и установок, способности их использования в учебной, познавательной и социальной практике;
  • самостоятельного планирования и осуществления учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, к построению индивидуальной образовательной траектории;
  • формирование у обучающихся системных представлений и опыта применения методов, технологий и форм организации проектной и учебно-исследовательской деятельности для достижения практико-ориентированных результатов образования;
  • формирование навыков разработки, реализации и общественной презентации обучающимися результатов исследования, индивидуального проекта, направленного на решение научной, личностно и (или) социально значимой проблемы.


Содержание программы


  1. Действительные числа

Натуральные и целые числа. Делимость чисел. Основная теорема арифметики натуральных чисел. Рациональные, иррациональные, действительные числа, числовая прямая. Числовые неравенства. Аксиоматика действительных чисел. Модуль действительного числа. Метод математической индукции.

  1. Числовые функции

Определение числовой функции, способы ее задания, свойства функций. Периодические и обратные функции.

  1. Тригонометрические функции

Числовая окружность на координатной плоскости. Синус и косинус. Тангенс и котангенс. Тригонометрические функции числового аргумента. Тригонометрические функции углового аргумента, их свойства и графики. Сжатие и растяжение графиков тригонометрических функций. Обратные тригонометрические функции.

  1. Тригонометрические уравнения и неравенства

Простейшие тригонометрические уравнения и неравенства. Методы решения тригонометрических уравнений: введение новой переменной, разложение на множители, однородные тригонометрические уравнения.

  1. Преобразование тригонометрических выражений

Формулы сложения, приведения, двойного аргумента, понижения степени. Преобразование суммы тригонометрических функций в произведение. Преобразование произведений тригонометрических функций в суммы. Методы решения тригонометрических уравнений (продолжение).

  1. Комплексные числа.

Комплексные числа и арифметические операции над ними. Комплексные числа и координатная плоскость. Тригонометрическая форма записи комплексного числа. Комплексные числа и квадратные уравнения. Возведение комплексного числа в степень. Извлечение квадратного и кубического корня из комплексного числа.

  1. Производная

Определение числовой последовательности и способы ее задания. Свойства числовых последовательностей.

Определение предела последовательности. Свойства сходящихся последовательностей. Вычисление пределов последовательностей. Сумма бесконечной геометрической прогрессии.

Предел функции на бесконечности. Предел функции в точке. Приращение аргумента. Приращение функции.

Задачи, приводящие к понятию производной. Определение производной. Алгоритм отыскания производной. Формулы дифференцирования. Правила дифференцирования. Понятие производной n-го порядка. Дифференцирование сложной функции. Дифференцирование обратной функции. Уравнение касательной к графику функции. Алгоритм составления уравнения касательной к графику функции y = f(x).

Применение производной для доказательства тождеств и неравенств. Построение графиков функций. Применение производной для отыскания наибольших и наименьших значений непрерывной функции на промежутке. Задачи на оптимизацию.


  1. Комбинаторика и вероятность.

Правило умножения. Перестановки и факториалы. Выбор нескольких элементов. Сочетания и размещения. Бином Ньютона. Случайные события и их вероятности.

Требования к уровню подготовки учащихся
В результате изучения математики на профильном уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

  • вероятностных характер различных процессов и закономерностей окружающего мира.

скачать файл


следующая страница >>
Смотрите также:
Рабочая программа по алгебре и началам математического анализа для 10 а класса
591.19kb.
Рабочая программа по алгебре и началам анализа для 10А класса, 3 часа в неделю, всего 102 часа
35.82kb.
Примерная программа среднего (полного) общего образования (базовый уровень) по алгебре и началам анализа
149.37kb.
Рабочая программа по алгебре для 11 класса Учителя математики
323.51kb.
Программа соответствует учебнику «Алгебра и начала математического анализа» А. Г. Мордкович для общеобразовательных учреждений М. Мнемозина, 2004-2010 гг
319.96kb.
Урок по алгебре и началам анализа в 11 классе на основе кейс-метода. Учебник под редакцией Ш. А. Алимов и др. Тема: Наибольшее и наименьшее значения функции
90.25kb.
Календарно-тематическое планирование по алгебре и началам анализа для 9 класс
102.88kb.
Рабочая программа по алгебре для 8 класса составлена на основе программы для общеобразовательных учреждений «Алгебра 7-9» Ю. Н. Макарычев, Н. Г. Миндюк и др,
95.26kb.
Конспект урока по алгебре и началам анализа в 10 классе. Тема: Методы решения тригонометрических уравнений. Цели: систематизировать знания учащихся по тригонометрии
24.59kb.
Рабочая программа по географии «Хозяйство и географические районы» для 9 класса
328.15kb.
Конспект урока по алгебре и началам анализа в 10 классе на тему Тригонометрические уравнения
80.44kb.
Рабочая программа учебного предмета «Литература» для 5 класса
871.9kb.