voeto.ru страница 1
скачать файл

М.Ю. Кравченко, учитель математики

МОСШ № 43 г.Нижневартовск, ХМАО-Югра


Как научить детей считать

(из опыта работы)

Вычислительная культура учащихся, формируется на всех этапах изучения курса математики, но основа ее закладывается в первые 5—6 лет обучения. В этот период школьники обучаются умению осознанно использовать законы математических действий (сложение, вычитание, умножение, деление, возведение в степень).

Но мой 5а класс, который я взяла четыре года назад, меня разочаровал. Первый диагностический замер показал неудовлетворительный результат. Только несколько учащихся в этом классе были на оптимальном уровне.


Таблица 1. Результаты решения арифметического примера в5а классе в начале 2008/2009 учебного года



Ясно, что успешно учиться с такими результатами довольно трудно. Большинство ошибок связано с ошибками в применении таблицы умножения. Поэтому необходимо системно работать над ее освоением. Она, как правило, заучивается детьми вслух, а при решении числовых выражений цифры воспринимаются зрительно. Надо создать предпосылки для успешного переключения канала восприятия. С этой целью технология предполагает демонстрационные карточки с цифрами 0-9. Я брала со стола 2 любых карточки и спрашивала, не называя цифр, а лишь показываем их ученикам: «Сколько?» Вопрос задавала вопреки методике не в полной, а в краткой форме. Ученики должны были научиться воспринимать цифры только зрительно. Отвечали хором. За минуту тренировки можно было десяток раз выполнить упражнение.

В процессе формирования вычислительной культуры необходимо довести умения до уровня навыка, а для этого каждый ученик должен выполнить примерно 600 упражнений в течение месяца. 25 учеников в классе – 15 тысяч упражнений. Сколько времени понадобится на их подбор и проверку?!

Зная, что наиболее быстрый выход из подобной ситуации – технологичный, я стала искать технологию, которая поможет научить детей считать быстро, на уровне навыка, не тратя лишние силы и время. Ведь если простые умения не доводятся до автоматизма, это не позволяет совершенствовать умения сложные.

Нужна технология, способная за короткий срок подтянуть детей, ускорить процесс формирования у них вычислительной культуры. И такая технология есть. Это технология совершенствования вычислительных умений Всеволода Николаевича Зайцева. [2]. Привлекла она меня тем, что результат достигается за очень короткий промежуток времени, путь к увеличению скорости вычислений лежит через уменьшение количества ошибок, на уроке тренаж занимает всего минуту. Ясно, что при совершенствовании вычислительных умений удобно выбрать в качестве результирующего признака скорость вычислений. Данная технология предполагает два вида деятельности: 1) работа с карточками – тренажёрами, диагностическими карточками; 2) работа с демонстрационными картами.

Мною были разработаны на 10 вариантов карточек - тренажеров для учащихся. Привожу пример одной из них (Рис.1):




Вариант 1 _________ ______ _________________

число класс фамилия ученика



Выполни умножение:

39 84 79 26 82

57 38 62 45 49
_____________________________________________________


Рис.1

Два раза в месяц выполняли основное упражнение технологии: умножение двузначных чисел. Все результаты каждого ученика записывались в сводный лист. Повторение упражнений периодически позволяло поддерживать навык постоянно на высоком уровне, что в свою очередь дало мне возможность больше времени уделять изучению нетрадиционных тем, законов, задач и уравнений. Упражнения технологии распространяются и на другие математические действия, изменяются лишь критерии результатов.

Определенных успехов можно добиться в улучшении вычислительных навыков за счет совершенствования форм и методов проведения устных вычислений на каждом уроке. Особое значение приобретает при этом игровая технология.

Зная о том, что основа вычислительной культуры формируется у учащихся младшего и среднего звена, и именно в этом возрасте дети воспринимают игру[4], я старалась сделать так, чтобы устный счет воспринимался учащимися как интересная игра, и применяла игровую технологию практически на каждом уроке. Мною разработано методическое пособие «Устный счет на каждый урок», в котором описаны следующие игровые формы устного счёта: «Магические квадраты», «В мире животных», «Змейка», «Хочу всё знать», «Кто быстрее», «Лучший счётчик», «Индивидуальное лото», «Зоркий глаз», «Билетик», «Числовая мельница», «Числовой фейерверк», «Кодированные упражнения», «Лесенка», «Эстафета», «Торопись, да не ошибись», «Не зевай» и другие.



Приведу примеры некоторых из них:

Игра «Билетик»

Тема: «Арифметические действия»



Из цифр номера билета (Рис.2), используя математические знаки - получить 100. В 5 классе для достижения цели учащиеся используют действия сложение и вычитание натуральных чисел. В 6 классе добавляются действии с отрицательными числами. Семиклассники могут включить в решение своего примера действие возведение в степень. В 8 классе учащиеся используют знания о квадратном корне. Игра способствует развитию вычислительных навыков, умению применять правила вычисления, зрительно воспринимать числа и числовые выражения.

Рис.2


Игра «Зоркий глаз»

Учащиеся в течении 1 минуты смотрят на доску с рисунком (Рис.3), затем доска закрывается, а учащиеся должны воспроизвести запись или ответить на вопросы учителя.



54

Рис.3



Эту игру целесообразно предлагать на уроках в 5-6 классах с геометрическим материалом. Игра развивает зрительную память, зоркость, математическое мышление.

В ходе игры отрабатываются навыки быстрых вычислений, умение ориентироваться в разрядах числа, развивается внимание, воспитываются дружеские отношения между учащимися.



Игра «Змейка»

Тема «Вычитание дробей»

Учащиеся часто ошибаются при вычитании дроби из целого числа. Основная трудность, возникающая при вычитании дро­бей, состоит в раздроблении единицы уменьшаемого на соответ­ствующие доли. Ее можно преодолеть, если добиться от учащих­ся умений правильно производить устно вычисления такого типа:

1 - ; 2 - ; 9 - 1; 7 - 4; 10 – 5 ; 22 - 8. Это позволит сделать игра. Главное в ней – умело составить карточки – примеры (Рис.4): с результата первого примера будет начинаться второй. Первым начинает тот учащийся, у которого пример начинается с цифры 2.

Чтобы убежать от «змеи» необходимо уметь:

а) слушать одноклассников;

б) быстро выполнять арифметические вычисления.

Рис.4


Игра - творчество, игра - труд. В процессе игры у детей вырабатывается привычка сосредоточиваться, мыслить самостоятельно, развивается внимание, стремление к знаниям. Дидактические игры очень хорошо уживаются с «серьезным» учением. Включение в урок дидактических игр и игровых моментов делает процесс обучения интересным и занимательным, создает у детей бодрое рабочее настроение, облегчает преодоление трудностей в усвоении учебного материала.[3]. Игра – это феномен культуры. Она обучает, воспитывает, развивает, развлекает, дает отдых. Еще А.С.Выготский подчеркивал, что «игра не должна исчезнуть из жизни ребенка, имея свое продолжение в дальнейшем школьном обучении и труде» [1].

Игровые ситуации активизируют деятельность учащихся, делают восприятие более активным, эмоциональным, творческим. Использование дидактических игр дает наибольший эффект в формировании вычислительной культуры учащихся. Создание игровых ситуаций на уроках математики повышает интерес к предмету, вносит разнообразие и эмоциональную окраску в учебную работу, снимает утомление, развивает внимание, сообразительность, чувство соревнования, взаимопомощь.

Применение различных форм устного счёта, приёмов быстрых вычислений и таблиц-тренажёров на каждом уроке в течение трех лет позволило добиться мне следующих результатов:
Таблица 2. Мониторинг вычислительной культуры учащихся за три года
  

 



В настоящее время бытует мнение, что вычислительная работа должна стать уделом компьютеров, а человек может отойти от этого рутинного занятия. При этом мы не замечаем, что всё более и более освобождая ученика от вычислений, фактически освобождаем его от умственного развития. “Развитие навыков должно предшествовать развитию ума”. Это сказал Аристотель 25 веков назад. На мой взгляд, в этой цитате навыки рассматриваются как необходимое условие развитие ума, а их совершенствование как важная составляющая развития детей.
Список литературы:

  1. Выготский Л. С. Роль игры в психическом развитии ребенка // Вопросы психологии. № 6, 1966. стр.42

  2. Зайцев В.Н. Практическая дидактика. – М., 1999.

  3. Смоленцева А.А. Сюжетно-дидактические игры на уроках математики. –М.:Просвещение. – 1987. – 97 с.

  4. Попова В.И.  Игра помогает учиться. //Начальная школа №2, 1987  стр.39



скачать файл



Смотрите также:
М. Ю. Кравченко, учитель математики мосш №43 г. Нижневартовск, хмао-югра
63.29kb.
Риказ доимп хмао югры от 19. 09
4982.14kb.
Семинар учителей математики по теме «Уровневая дифференциация обучения на уроках математики»
12.37kb.
Урок математики в 5 классе по теме «Упрощение выражений»
98.45kb.
Филлотаксис и числа Фибоначчи
9.4kb.
П ути развития минерально-сырьевой базы территории хмао – Югры на ближайшую перспективу Олерский В. П.*, Золоев К. К.*, Зубков А. И.*, Кривко Т. Н.*, Душин А. В.**, Федоров О. П., Шиятый И. Н
128.91kb.
Розклад державної підсумкової атестації в 4 класі Чубарівської зош І-ІІІ ступенів у 2013-2014 н р
100.64kb.
Ильязова Ольга Анатольевна, учитель математики гбоу сош с
51.61kb.
Программа дисциплины дпп ф. 09 «числовые системы» Специальность 032100 (050201. 65) математика Квалификация учитель математики
109.16kb.
1. Родионов Николай Павлович, учитель физики моу сош №4 г. Грязи, Серикова Галина Дмитриевна, учитель физики моу лицей №66 г. Липецк
16.32kb.
Учитель математики гбоу сош №508 юао г
100.6kb.
Т. М. учитель математики мкоуоош пос. Октябрьский, Александровский район. Открытый урок
69.13kb.